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Abstract—It is extremely difficult to locate the con-
tour of the prostate in B-scan ultrasound images auto-

matically by computer because of low resolution and high

noise levels. In this paper we present a semi-automatic

prostate contour extration scheme, which is based on the

wavelet transform and active contour models, or snakes.

The ultrasound image is first decomposed into edge maps

at different resolutions via the wavelet transform. Seed

points are found in the coarsest edge map by examining

the maxima along the radial profiles which emanate from

an anchor point selected manually. These seed points are

used to initialize a snake, which will evolve across the edge

maps at different resolutions and eventually converge to

the contour of the prostate.

Keywords—Ultrasound, prostate, wavelet, edge de-
tection, active contour models, snakes, deformable mod-

els

I. Introduction

Prostate cancer has become a focus of new interest
as the population ages and the death rate due to cardio-
vascular disease decreases. Advanced prostate cancer is
not curable, but when it is diagnosed in an early stage,
it is curable [1], [2]. This prompts the need to improve
the detection rate of the disease in early diagnosis.

Accurate detection of prostate contours is essential to
many diagnostic and treatment procedures. For example,
prostate-specific antigen density (PSAD) is very useful in
differentiating benign from malignant prostate disease.
PSAD involves the estimation of the prostate gland vol-
ume, which is derived from the boundaries. Contour in-
formation is also helpful in directing biopsy needles to the
suspicious site and monitoring volume change of hypo-
echoic lesions. Currently the boundaries of the prostate
are manually outlined by a urologist, which is a tedious
and challenging task. Moreover, inter-observer and intra-
observer variability is inevitable. So automatic contour
extraction by computer would be of great value.

Unfortunately it is extremely difficult to determine
the prostate boundaries automatically by computer due
to the low resolution and poor contrast of B-scan ultra-
sound images, accompanied by the high level of speckle
noise due to scattering and other complicated interac-
tions between ultrasonic pulses and human tissue. More-

over, missing boundary segments are not uncommon,
which are attributed to acoustic shadowing, and/or hy-
perechoic structures within or around the prostate gland.

As an earlier attempt, a contour detection scheme
using the Laplacian of Gaussian filter was applied[3].
The problem with this scheme was that it is difficult
to find a proper threshold. Too many or too few edges
may be found depending on the threshold selected, which
makes it difficult to track all the relevant edges that cor-
respond to the object and form a closed contour from
these boundary segments.

Our novel contour extraction scheme consists of the
following steps: first the ultrasound image is decomposed
into edge maps at different resolutions using the wavelet
transform. Then some seed points are found in the coars-
est edge map. A snake is initialised using these seed
points, which evolves across the edge maps at different
scales and finally converges to the contour of the prostate.

II. Contour Extraction Scheme

A. Multiscale Edge Detection

Wavelets are families of scaled and shifted versions
of a mother wavelet, which is usually a waveform of lim-
ited duration with an average value of zero. One ma-
jor advantage offered by wavelet analysis is its ability
to perform local analysis, that is, the wavelets’ localized
support means that some local features, such as abrupt
transitions of a signal, can be better depicted or revealed
by wavelets than by other means.

The quadratic spline wavelet and its scaling func-
tion of relevance to the discrete wavelet transform that
follows were first introduced by Mallat and Zhong [4].
The quadratic spline wavelet is the first order deriva-
tive of its scaling function, which closely approximates
a Gaussian function. The wavelet decomposition of an
image I(x, y) ∈ L2(R2) at scale 2j has two components,
dH
2j (x, y) and dV

2j (x, y), defined by the convolution with
the two directional wavelets ψH

2j (x, y) and ψV
2j (x, y) re-

spectively

dH
2j (x, y) = ψH

2j (x, y) ∗ I(x, y)

dV
2j (x, y) = ψV

2j (x, y) ∗ I(x, y) (1)

The two directional wavelets are given by the partial
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derivative of the corresponding spline scaling function
φ2j (x, y) as follows

ψH
2j =

∂φ2j (x, y)

∂x

ψV
2j =

∂φ2j (x, y)

∂y
(2)

By substituting (2) into (1) we get

(

dH
2j (x, y)
dV
2j (x, y)

)

=

(

ψH
2j (x, y) ∗ I(x, y)

ψV
2j (x, y) ∗ I(x, y)

)

=

(

∂
∂x
(φ2j ∗ I)(x, y)

∂
∂y
(φ2j ∗ I)(x, y)

)

= ∇(φ2j ∗ I)(x, y) (3)

As we can see in (3) the two components of the wavelet
transform of an image I(x, y) at scale 2j are equivalent to
the gradient of the image smoothed by a corresponding
scaling function φ2j .

The modulus of the wavelet transform is given by

dHV
2j (x, y) =

√

|dH
2j (x, y)|2 + |dV

2j (x, y)|2 (4)

and the angle of the wavelet transform vector is

A2j (x, y) = tan−1

(

dV
2j (x, y)

dH
2j (x, y)

)

(5)

Shown in Fig.1(a) is an ultrasound image of the prostate,
which is decomposed up to scale 24 via the wavelet
transform. One of the most attractive characteristics of
this transform is that the notable grey scale transitions
within the original image, which correspond to the promi-
nent features such as the prostate gland boundaries, are
present as local maxima in the modulus of the wavelet
decompostition, which are identified as bright pixels in
Fig.1(b)-(c).

The transform provides us with the edge maps of
the original image at different resolutions from the coars-
est to the finest. Note the contours of the prostate are
prominent in the coarser (large scale) edge maps. In con-
trast, the noise manifests itself in a random pattern and
is mostly confined to the edge maps of small scales. This
feature implies that we can obtain a rough boundary of
the prostate from the edge map at the coarsest level to
avoid the interference of the noise. Then we can refine
the boundary by incorporating the information from the
edge maps of lower scales. The angle of the two compo-
nents of the wavelet transform also contains important
information, which actaully gives us the orientation of
the edge vector at each pixel. The angle at scale 24 is
shown in Fig.1(d). The information of both the modulus
and the angle will be employed later to locate the seed
points, as described in the next subsection.

(a)

(b)

(c)

(d)

Fig. 1. The wavelet decomposition of a prostate ultrasound image.
(a) original image. (b) modulus dHV

23
(x, y). (c) modulus dHV

24
(x, y).

(d) angle A
24 (x, y)

B. Locating the Seed Points

The next step is to locate some preliminary boundary
(seed) points in the coarsest edge map. First, an anchor
point is set by the user, who also indicates the rough
position of the first seed point. A number of radial lines
are drawn from the anchor point and along these lines
the radial profiles are extracted, as shown in Fig.2(a).
Proceeding radially from the anchor point, a seed point
is always characterised by a local maximum, which is
larger than its two closest neighbours and strictly larger



than at least one of them.
As we can see in Fig.2(b) the boundary points are

present as the local maxima along the radial profiles and
the loci of the prostate contour are vaguely disernible.
Most of the desired seed points are of large amplitude.
However, some of them are very weak in strength re-
sulting in broken segments. So it is necessary to find a
strategy which somehow favours these points and finally
claims them as seed points successfully. As we can see,
every two adjacent desired seed points are close to each
other because of the fact that the contour is relatively
continuous. Apparently the next seed point should be
sought within a small neighbourhood rather than “glob-
ally” along the radial profile.

Associated with each edge point is a tangent vector,
which is perpendicular to the orientation of the edge vec-
tors, that is, At

2j (x, y) = A2j (x, y)− π/2. As we can see
in Fig.2(c), the tangent vector of the previous seed point
is roughly pointing to the position of next desired seed
point. We also take the perpendicular line of the next
radial line. The intersection points of these two lines
with the next radial line defines a neighbourhood within
which the next desired seed point will be sought. The
points outside the neighbourhood are adversely weighted
so that they will not challenge the local maximum within
the neighbourhood, which is then asserted as the next
seed point, as shown in Fig.2(d).

Fig.3 shows all the seed points successfully identified
using this strategy. The plus sign indicates the anchor
point and the cross is the first edge point, both selected
by the user. These seed points will be used to initialise
the snakes which are expected to find the contour even-
tually.

C. Snakes

A snake is a dynamic curve,

v(s) = (x(s), y(s)), s ∈ [0, 1]

which moves within an image trying to minimize its en-
ergy, which is defined as the weighted sum of an internal
energy and an external energy[5], [6].

Esnake =

∫ 1

0

Eint(v) + γEext(v)ds

=

∫ 1

0

1

2

(

α|v′(s)|2 + β|v′′(s)|2
)

+ γEext(v)ds (6)

The internal energy comes from within the curve itself
and is defined as energy of continuity and energy of curva-
ture. The external energy is usually set as the gradient of
the image, which will draw the snake towards the salient
features of the image, such as edges (high amplitude of
gradient). The behaviour of the snake is controlled by

the regularization parameters α, β, γ. A large α discour-
ages stretching and makes the snake behave like an elastic
string, which can shrink or contract. A snake with large
β, which discourages bending and gives a dominant effect
of smoothing, behaves more like a rigid rod. If we set β
to zero, that is, switch off the influence of the bending
effect, we can allow a sharp corner to form. The energy
minimizing process can also be interpreted from a point
of view of force balance. When the elastic force (cor-
responding to the energy of continuity), bending force
(corresponding to the energy of curvature), and poten-
tial force (corresponding to the external energy) reach an
equilibrium, the snake is expected to rest on the objects
of interest within the image.

In our contour extraction scheme, the external energy
is designated as the modulus of the wavelet transform,
that is, Eext(v) = dHV

2j (v). The seed points obtained
from the previous step are used to initialise a snake which
evolves across the edge maps at different resolutions and
finally stabilises and rests on the contour of the prostate,
as shown in the next section.

III. Results

The seed points identified at scale 24 (Fig.3) are used
to intialise a snake, which starts evolving from the edge
map at scale 23 (Fig.1(b)). The control parameters are
α = 0.2, β = 0.2. γ is set to 1.1 to emphasize the im-
age force at higher scales and reduced to 1.0 to make the
snake immune to the interference from the noise. As we
can see in Fig.4, the snake first contracts and smooths it-
self due to the influence of its internal energy. Gradually
it is attracted to the prominent edges within the image
due to the potential force. The stablised snake at scale 23

is then used to intialise a snake which will evolve within
the edge map at scale 22 and directs itself towards finer
feature within the edge map. The final contour found by
the snakes is shown in Fig.5, which closely matches the
edges disernible in the original image.
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Fig. 2. Locating the seed points by maxima in radial profiles. (a)
emanating radial lines. (b) radial profiles. (c) the tangent vectors
and the perpendiculars. (d) locating the maximum.

Fig. 3. Seed points identified at scale 24

Fig. 4. Snake evolving at scale 23

Fig. 5. Contour extracted
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